A demonstration of ensemble-based assimilation methods with a layered OGCM from the perspective of operational ocean forecasting systems
نویسندگان
چکیده
A demonstration study of three advanced, sequential data assimilation methods, applied with the nonlinear Miami Isopycnic Coordinate Ocean Model (MICOM), has been performed within the European Commission-funded DIADEM project. The data assimilation techniques considered are the Ensemble Kalman Filter (EnKF), the Ensemble Kalman Smoother (EnKS) and the Singular Evolutive Extended Kalman (SEEK) Filter, which all in different ways resemble the original Kalman Filter. In the EnKF and EnKS an ensemble of model states is integrated forward in time according to the model dynamics, and statistical moments needed at analysis time are calculated from the ensemble of model states. The EnKS, as opposed to the EnKF, update the analysis also backward in time whenever new observations are available, thereby improving the estimated states at the previous analysis times. The SEEK filter reduces the computational burden of the error propagation by representing the errors in a subspace which is initially calculated from a truncated EOF analysis. A hindcast experiment, where sea-level anomaly and sea-surface temperature data are assimilated, has been conducted in the North Atlantic for the time period July until September 1996. In this paper, we describe the implementation of ensemble-based assimilation methods with a common theoretical framework, we present results from hindcast experiments achieved with the EnKF, EnKS and SEEK filter, and we discuss the relative merits of these methods from the perspective of operational marine monitoring and forecasting systems. We found that the three systems have similar performances, and they can be considered feasible technologically for building preoperational prototypes. D 2003 Elsevier Science B.V. All rights reserved.
منابع مشابه
Capabilities of data assimilation in correcting sea surface temperature in the Persian Gulf
Predicting the quality of water and air is a particular challenge for forecasting systems that support them. In order to represent the small-scale phenomena, a high-resolution model needs accurate capture of air and sea circulations, significant for forecasting environmental pollution. Data assimilation is one of the state of the art methods to be used for this purpose. Due to the importance of...
متن کاملCapabilities of data assimilation in correcting sea surface temperature in the Persian Gulf
Predicting the quality of water and air is a particular challenge for forecasting systems that support them. In order to represent the small-scale phenomena, a high-resolution model needs accurate capture of air and sea circulations, significant for forecasting environmental pollution. Data assimilation is one of the state of the art methods to be used for this purpose. Due to the importance of...
متن کاملAssimilation of temperature into an isopycnal ocean general circulation model using a parallel ensemble Kalman filter
Temperature data from the Tropical Atmosphere and Ocean (TAO) array are assimilated into the Pacific basin configuration of the Poseidon quasi-isopycnal ocean general circulation model (OGCM) using a multivariate ensemble Kalman filter (EnKF) implemented on a massively parallel computer architecture. An assimilation algorithm whereby each processing element (PE) solves a localized analysis prob...
متن کاملEnhanced Predictions of Tides and Surges through Data Assimilation (TECHNICAL NOTE)
The regional waters in Singapore Strait are characterized by complex hydrodynamic phenomena as a result of the combined effect of three large water bodies viz. the South China Sea, the Andaman Sea, and the Java Sea. This leads to anomalies in water levels and generates residual currents. Numerical hydrodynamic models are generally used for predicting water levels in the ocean and seas. But thei...
متن کاملImpact of temperature error models in a univariate ocean data assimilation system
Ocean data assimilation systems combine observations with information from prediction models to produce an analysis or estimate of the ocean state. Statistical interpolation assimilation methods use observations to correct a model-based first guess and require specification of first-guess and observation error statistics. Often the first-guess error covariance (FGEC) is described by an analytic...
متن کامل